ISSF 2010

Spent Nuclear Fuel Management in Spain

Pablo Zuloaga, Javier Fernandez
Introduction

- **Ministry of Industry, Tourism and Commerce**
 - Radioactive waste, decommissioning and NSF management policy
 - *Cabinet approved “6th Radioactive Waste General Plan” 2006*
 - Grants Licenses of Nuclear Installations

- **Nuclear Safety Council**
 - Independent from the Government
 - *Nuclear safety and radiological protection regulation and guidance*
 - *Evaluation and reporting previously to Licenses*
 - *Inspection and enforcement*

- **ENRESA**
 - Management of spent fuel and radioactive waste
 - Nuclear installations decommissioning as well

- **NPP / Utilities**
 - Operate on site storage
 - Deliver the SF and waste packages in accordance to WAC
 - Pay the costs through fees on nuclear energy generation
NPP location and NSF situation

- **10 Nuclear Power Reactors**
- **8 reactors in operation in 6 sites**
 - 7.8 GWe
 - 19% of country’s electricity generation
- **2 NPP shut down, being decommissioned**
NSF and HLW-MLW Inventory and estimates

- **Present Inventory**
 - 4000 tU SF in storage (December 2009)
 - *Most of it in pools*
 - *2 ISFSI in operation (dry-storage)*
 - Trillo NPP → dual purpose metal casks indoor
 - Jose Cabrera NPP → concrete casks on a pad outdoors
 - Ascó NPP is in the licensing process for another ISFSI → similar to Jose Cabrera ISFSI

- **Total amount of Spent fuel considered**
 - 20000 Fuel elements
 - 6700 tU

- **HLW and MLW management**
 - HLW (vitrified waste canisters)
 - Medium Level (long-lived) waste packages
 - *Around 650 m3 from reprocessing*
 - *Around 1000 m3 to be generated in decommissioning reactor internals*
General aspects of NSF management

- **The priority is the Centralized Interim Storage Facility (ATC)**
 - Complemented by In situ Increased Storage capacity when required
- **Deep Geological Disposal studies continuation to support decision making about management options**
- **Other options also studied: advanced cycles**
- **R&D Plan 2009-2013**
- **Costs supported by the NPPs as a fee on nuclear electricity gross production**
- **Direct disposal considered as an assumption for financing the waste management fund**
In situ storage capacity increase

- Re-racking of all NPP’s in previous actuations
- Second re-racking of Cofrentes NPP in 2009
- Dry storage at Trillo NPP
 - ENSA DPT Dual purpose casks
- Dry storage at Jose Cabrera NPP
 - HI STORM system
 - Total fuel inventory
- Dry storage at Ascó NPP
 - HI STORM system
 - Number of casks will depend on ATC Commissioning
Independent SF storage Facility at Trillo NPP

- **Agreement between ENRESA and Utility**
 - ENRESA licensed the system
 - Trillo NPP licensed the facility as part of the NPP

- **Storage Casks System**
 - Dual purpose metal casks. ENSA DPT
 - 21 fuel elements per cask
 - Non encapsulated
 - Re-licensed from 45 to 49 GWd/tU

- **ISFSI Commissioned in 2002**
 - Dedicated building to meet NPP dose rate design criteria
 - Capacity for 80 casks
 - 18 casks stored
 - 378 fuel assemblies
Independent SF storage facility at Jose Cabrera NPP

- **Similar scheme as in Trillo NPP**
 - Agreement ENRESA-Utility
- **HI STORM system**
 - MPC Multipurpose canisters
 - Shielding modules HI STORM
 - Transfer cask HI TRAC
 - Transport cask HI STAR
- **Storage pad for 12 modules + 4 modules for Decommissioning wastes**
- **100% fuel inventory transferred**
 - 377 fuel assemblies (100.5 tU)
ATC. The Centralized SNF and HLW storage facility project

• **Defined as a priority in the 6th General radioactive Waste Plan**

• **Parliament supported:**
 – In 2004, Industry Commission of the Parliament unanimously asked the Government to develop ATC facility
 – In 2006, the Parliament urged the Government to set an Inter-Ministerial Commission to lead the site selection process

• **Site selection process in progress.**
 – Launched in December 2009 with a decree establishing minimum criteria and how to proceed.
 – Technical report released in September 2010 pre-characterizing the eight (8) final candidates’ sites:
 • Meteorology
 • Geology
 • Communications and logistics
 • Social issues: economic impact, social acceptation, etc.
 •...
ATC. The Centralized SNF and HLW storage facility project

- **Advantages:**
 - Unification of SF management
 - Independence between short-term and long-term management
 - Flexibility
 - Minimization of the total number of nuclear installations
 - Efficiency for reaching safety and security levels
 - Possibility to release decommissioned nuclear sites
 - Respect of international engagements
 - Cost reduction
 - Optimization of support services and operations
ATC. The Centralized SNF and HLW storage facility. Main parts

- Three main parts
- The Centralized Interim Storage Facility (ATC) itself
 - Unloading and encapsulation
 - SF/HLW storage
 - MLW storage
- A Research Center
 - Spent fuel and waste laboratory
 - Other laboratories (chemistry and environment, materials, prototypes…)
- A Business park
 - Regional development project
 - Infrastructure for companies settlement in the area
ATC. The Centralized SNF and HLW storage facility. Site selection process

- **Siting based on volunteer candidate municipalities:**
 - Principles of publicity, participation and transparency.
 - Volunteer municipalities: candidature approved by the Local Council

- **Creation of an inter-ministerial Commission to:**
 - Defining the technical and social criteria for municipalities candidate to host the facility
 - Supervising the respect to the siting process criteria
 - Managing the information and candidatures reception
 - Assessing and Proposing to the Government suitable sites in candidate municipalities

- **Information campaign 2006-2008**

- **Call for candidate municipalities in December 2009**
 - Excluded areas report published in April 2009. Site proposal
 - Potential sites in eight municipalities are being studied

- **Pre-characterization of sites released in September 2010**

- **The Government will decide the site**
 - Dialog with the suitable candidate local councils
 - Dialog with Region Government
ATC. The Centralized SNF and HLW storage facility. Functions

- The ATC facility is designed for the following functions:
 - Reception and unloading.
 - Encapsulation of fuel assemblies.
 - Long-term Storage of SNF and waste packages
 - Retrieval of waste packages for future management options.
ATC. The Centralized SNF and HLW storage facility. Conceptual design

- **Vault type:**
 - Spent Fuel and HLW encapsulated in canisters
 - Canisters placed in storage dry wells
 - *Double barrier*
 - *Inert atmosphere*
 - Cooling by natural draft
- **Storage bunker for MLW (long lived)**
ATC. The Centralized SNF and HLW storage facility. Focus

- Detailed revision of expected inventories and acceptance criteria, with particular attention to
 - Trend to higher burn-ups
 - Final cycles with relatively low cooling periods
 - Fuel characterization status and requirements
- SF and waste laboratory
 - SF characterization and behaviour
 - Extended storage
 - Disposal
 - Mechanical, chemical, and radiological characterization and behaviour of Rods, samples, irradiated materials
- Launching characterization and licensing work after site designation
Deep Geological Disposal. Previous works

- **Site identification Program: 1986-1996**
- **Deep Geological Repository design and associated Performance assessment (1990-2004) in three steps:**
 - Disposal concept and basic design
 - *Carbon steel canisters placed horizontally in parallel galleries, with Calcium-Bentonite seal*
 - Strengthening the bases of the concept
 - *Flexibility and Robustness (better justification of decisions, alternatives analysis)*
 - *Convergence: Package definition common for the three host rocks in consideration (salt, clay and granite)*
 - Optimization through requirements review
Deep Geological Disposal. Supporting Research

- Priority of HLW/SNF management is interim storage
- DGR in 2050 for planning and financial purposes
- R&D supporting Deep Geological Repository development adapted to planning.
- Main objectives:
 - Respect of International Commitments and Co-operation
 - Maintenance of research groups’ Capabilities
 - Follow-up of state of the art
 - Support future decisions
 - Focus on techniques and basic aspects
 - Consideration of alternatives (i.e. separation and transmutation) and their influence in DGR concept
Conclusions

- **ATC. The priority**
 - Gives time for decision making depending on trends and technological and social advances
 - The Government has launched the call for candidate municipalities to host the Central SNF/HLW Interim Storages in December 2009.
 - Site analysis to be completed in June
 - The Ad-hoc Inter-ministerial Commission will pass a report with site proposals
 - Technical report pre-characterizing sites released in September 2010
 - The CSN approved the generic design of such facility

- **NPP on site storage capacity increase as needed**

- **Research includes extended storage conditions. Research on geological disposal and on advanced recycling options continue in a scale adapted to the general waste management plan time frame.**

- **Reports to the Government on**
 - Generic Design of Deep Geological Disposal,
 - Management options and
 - Feasibility of advanced separation and transmutation
• Thank you for your attention