Transport and Storage Considerations for Management of Used Fuel

Bob Grubb
Chief Operating Officer
Transnuclear, Inc.
Options selected to manage Used Fuel determine what issues will need to be addressed

Basic Options
- Store
- Recycle
- Disposal (Future)

Each management option has unique requirements and challenges

AREVA/TN Inc has been involved in all aspects of transport, storage, recycling and disposal of used fuel
On-Site Fuel Management Options

► On-Site wet storage
 ◆ Typical short term storage in fuel pools
 ◆ Re-racking is common
 ◆ Least expensive approach until fuel pool is full

► On-Site Dry storage
 ◆ Many Examples
 ◆ Over 50,000 fuel assemblies dry stored in the US
Off Site Fuel Management Options

- **Site-to-Site Transport and then Storage**
 - Used sparingly to take advantage of larger fuel pools
 - Oconee to McGuire (US)
 - Brunswick and Robinson to Shearon Harris (US)

- **Site-to-Central Storage Facility**
 - Early shipments to central wet storage facility (US)
 - Leibstadt to Zwilag (Switzerland)
 - Other locations

Transnuclear Inc.
Recycle and Disposal
Fuel Management Options

- Transport to Lag Storage
 - Can be either wet or dry
 - Can support both recycle and disposal
 - Yucca Mountain approach

- Site-to-Recycle
 - Recycling Facility

- Site-to-Disposal
 - Yucca Mountain
 - Future

Transnuclear Inc.
Management Issues with Used Fuel Storage

- Issues can be grouped into three areas
 - Transport now
 - Store
 - Wet and Dry
 - Short term and Extended
 - Transport later

- All options require some level of Transport
- Some of the issues are common to both Storage and Transport
Transport Now

- Regulations are well defined
- The issues are limited to a small window of time
- Issues can be addressed at the time of transport package licensing
- Approaches to safety and security evaluations are reasonably clear
 - Package Safety (Structural, thermal, criticality, shielding, containment)
 - Package Security
 - IAEA standards
 - Package license/CoC
 - Local validation of package for transport
- Transportation community share information
Wet Storage
- Pool capacity
- Re-racking of pool
- Materials issues
- Water Chemistry
- Security

Short to Intermediate Term Dry Storage
- Rules fairly well established at time of storage
- Containment/confine
- Materials issues
- Payload issues
- Natural phenomena protection
- Security Requirements

Extended Term Dry Storage
- All of the short to intermediate term issues
- Change in regulations
- Inspection/verification
- Materials Aging
- Material properties data and analytical methods for safety evaluations
Transport Later

- Dual Purpose (Transportation aspects)
 - Subject to changes in transportation regulations
 - Evolution of knowledge
 - Political pressures
 - Etc.

- Revalidation or upgrades difficult
 - Regulation differences between storage and transport
 - Transport casks built in the 1980s no longer meet current requirements
 - Testing to different requirements during fabrication (containment/thermal and shielding material testing)
 - MP187 able to meet requirements but restricted to 13kW (MP197HB now at 32kW with thermal test required)

- Counting on transport in the future carries a level of risk
How is the risk managed

- Minimize the length of time in storage
- Upgrade Dual Purpose system to stay current with current transport requirements if possible or practical
- Transportation under a one time exemption
- Use of different over-packs for storage and transportation (US, Switzerland, Spain, UK etc.)
- Flexibility and versatility in design (Transportation aspects)
Design Flexibility and Versatility
Canister Solution

- **Canister Solution**
 - Canister is dual purpose - meets the current storage and transport regulations
 - Can be stored in a licensed storage over-pack and transported in an existing licensed transport cask
 - If transport regulations change then future transport casks can accommodate these canisters as a payload
 - No need to unload or open up the canisters
 - Transport cask is the containment boundary
 - The canister is also a containment boundary but no credit is taken for this containment for transportation

- Must be opened to recycle
- May need to be opened for future disposal depending on the repository requirements
- Methods have been demonstrated for easily opening welded canister
- Transnuclear has designed the TAD canister which is compatible with the disposal requirements mandated by DOE
Design Flexibility and Versatility
Transport and Dual Purpose

TN DUO (introduced in another session)
- Dual Purpose
- Bare fuel cask
- Compatible with Recycling Facility

MP197HB (introduced in another session)
- Transport only
- Canister as a payload
- Compatible with Recycling Facility
- Able to transport canisters that are stored vertically or horizontally
- Directly compatible with NUHOMS® Concrete Storage Systems
- Directly compatible with TN NOVA® Metal Storage Systems
Conclusion

- If no other lesson is to be learned, the history in the used fuel storage and transportation industry guarantees change will occur.
- Increase of knowledge will occur which will impact regulations.
- Political pressure will modify the current regulations both locally and globally.
- Evolution of analysis methods and analytical and computational capabilities will cause evolution of the rigor required for qualification of packages.
- Economics may drive designs and regulations toward an even more risk based approach.
- Currently we are looking at:
 - SCC
 - High burn-up fuel
 - 130 year + storage in some locations
 - Higher seismic requirements
 - Multiple impact drop scenarios
 - Burn-up credit

Tomorrow ??